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Critical properties of Dyson’s hierarchical model 111. The 
n -vector and Heisenberg models 

D Kim and C J Thompson 
Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 18 August 1977 

Abstract. Exact renormalisation group equations (RGE) are obtained for the d-dimen- 
sional n-vector and s p i n 4  Heisenberg versions of Dyson’s hierarchical model. In the 
quantum mechanical case the fixed point and neighbourhood properties of the RGE are 
shown to be independent of S indicating universality of critical behaviour in spin magni- 
tude. Expansions for critical exponents, analogous to the usual c = 4 - d  expansions, are 
obtained and the RGE solved numerically to obtain relevant scaling indices. The n +CO or 
spherical limit is also discussed and l / n  corrections to critical exponents are calculated to 
first order in l /n .  

1. Introduction 

In two previous papers (Kim and Thompson 1977, 1978, to be referred to as I and I1 
respectively), we investigated the critical behaviour of the one-dimensional hierar- 
chical Ising model (HIM) (Dyson 1969, 1971) utilising a new renormalisation group 
recursion relation. 

In I we derived the renormalisation group equation (RGE) for the one-dimensional 
HIM with potential falling off as r-(l+a) and investigated the critical behaviour of the 
model in the range 0 < a < 1. Analytic results were obtained in the ‘classical’ region 
0 < a < 4 and critical exponents were computed to high numerical accuracy in the 
non-clafsical region ;< a < 1. In addition we obtained Aa = a -4 expansions for 
critical exponents to third order in ha. In I1 we investigated the borderline one- 
dimensional HIM, corresponding to a = 1, which is known rigorously (Dyson 1971) to 
undergo a first-order phase transition. By numerical analysis of the RGE we found that 
the critical point in this case is characterised by essentially singular behaviour. 

Our purpose here is to investigate the n-vector and s p i n 3  quantum mechanical 
Heisenberg versions of the hierarchical model (HM) in arbitrary dimension using the 
renormalisation group methods developed in I and 11. 

In P 2 of this paper we derive exact RGE for the n-vector and spin-S Heisenberg 
hierarchical models in d dimensions. We find that the critical behaviour of the spin-S 
Heisenberg model is governed by a fixed point of the RGE which is independent of S, 
and identical with the appropriate fixed point for the classical Heisenberg model 
(n = 3, or S +CO), thus showing explicitly, for the first time to our knowledge, the 
universality of critical behaviour in spin magnitude for a particular class of quantum 
mechanical models. 

In 4 3 we investigate the critical behaviour of the n-vector model by obtaining 
asymptotic expansions for the scaling index YE to second order in Aa = (T - d / 2  > 0 
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386 D Kim and C J Thompson 

and numerical values for yE in the range d/2 < U < d, for n = 1, 2, 3 and d = 1 and 3. 
(As before all exponents are classical in the range 0 < U < d/2.) 

The n + CO limit of the n -vector model is discussed in 0 4 where it is shown that the 
equation of state becomes exactly that of the corresponding hierarchical spherical 
model (McGuire 1973). (In the standard proof of the equivalence of the spherical 
model and the n + CO limit (Kac and Thompson 1971) it is assumed that the interaction 
is translationally invariant. The hierarchical model is not translationally invariant but 
all sites are equivalent and the proof can be easily modified to allow for this case.) 

In 0 5 we discuss the RGE in the n + CO limit, obtaining the known result yE = d - (T 

for d/2 < U < d in this limit. An asymptotic expansion for the RGE is also developed 
and used to obtain the l / n  correction to the spherical yE value. 

We conclude in Q 6 with a discussion of our results. 

2. Renormalisation group equations 

For a d-dimensional HM (Blekher and Sinai 1974), a volume V, with 2d' spins is 
divided into r = 2d equal subvolumes Vi-l,i, i = 1, . . . , r each with 2d''-1' spins. The 
Hamiltonian %( Vl) of the volume Vl is then constructed recursively from Vl-l) 
by 

where for the n-vector model So,i is the n-dimensional classical spin at position i with 
magnitude IlS~,~ll equal to unity. The starting point of (2.1) is 

%O( Vo,i)= -He S0.i (2.2) 

where H is the n-dimensional magnetic field vector. 
As in I, we use the identity 

where 

to decouple the interaction term in (2.1) and thereby obtain the recursion relation for 
the partition function: 

QI@, H I =  [ * . * [ exP(-8R!(Vl))I1 dS0.i 
llso,ill= 1 
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the RGE can be expressed as 

(2.6) 

Furthermore, due to the spherical symmetry in H of QI(& H), A(x)  depends only 

A (2(d+uY2 

on x = IIxII. The angular integration in (2.6) can then be performed easily to give 

y) = Rn (x ,  Y 1 0 <P;-l(x 1)‘ (2.7) PI (2(d+u)/2 

where the integral operator Rn(x, y) is defined as 

with r = 2d and I&) the modified Bessel function of the first kind of order I/. 

that for n = 1 and n = 3 (2.7) reduces to 
Equations (2.7) and (2.8) are the desired RGE for the n-vector HM. We note here 

y)=  T - ” ~  J exp[-(x -y)2](Fl-l(x))’ dx I;I(2(d+u)/2 
-a2 

and 
00 

(2.10) 
X y) = v-1/2 expi-(x - y)*]-(&~(x))’ dx I, Y 

Pl (2(d+u’/2 

respectively, if we use the fact that & x )  is an even function of x .  (The definition of 
P I @ )  is slightly different from that considered in I.) 

For the spin-S Heisenberg HM, we write the Hamiltonian in the form 

(2.11) 

where the notation is the same as in (2.1) except that now 90.i are quantum mechanical 
spins of magnitude S with ( 3 0 , ~ ) ~  = S ( S  + 1). The constant term is added for later 
convenience. The single spin Hamiltonian is 

H 
~ o ( V o , i ) =  - F ( g o , i ) z  (2.12) 

where H is the magnetic field in the z direction. 
To derive the RGE for this system, we restrict our discussion for the moment to the 

d = 1 case for notational simplicity. Written explicitly, the Hamiltonian for the 
N-level zN spin system is 

(2.13) 

where 

gp,r = 9p-1,2r-1+$-1,2r = g0 . i  
i 

for ( r - l ) 2 p + l ~ i ~ r 2 p ,  r = 1 ,  . . . ,  2N-p, p = 1 , .  . . , N. As shown by Dyson (1969), 
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the partition function for (2.13) may be written as 

QN@, H ) =  ’f exP[-PE~({jp.r})+PHm/Sl (2.14) 
fiP.,) m=-jN.l 

where the eigenvalue  EN({^^,^)) of 3tN in the diagonal representation is 

(2.15) 

The first sum in (2.14) is over all integers satisfying the conditions; 
2N-1 0 =sjl,r c 2 s ;  

ljp-’1,2r-1 -jp-1,2rl s j p , r  ~ j p - 1 . 2 r - 1  +jp-1,2r; 

r =  1 , .  . . , 
(2.16) 

p = 2  ,..., N, r = l ,  . . . ,  2N-P 

If we consider two such systems of 2N-spins coupled together by the (N  + 1)th 
level interaction, thus forming the N + 1 level system, the partition function of the 
latter becomes 

where {jPvr} and { j b , r }  denote the eigenstates of {Si,,} for 
respectively. Now let us consider the following quantity: 

A = e x p [ ( p u / 2 ~ ) ~ ( j + $ ) ~ + ~ ~ m / ~ ]  
x + y  j 

j=lx-yI m = - j  

(2.17) 

the two N-level systems 

(2.18) 

Using the identity 
.m 

exp(b2/4) sinh a = *-‘I2 J exp(-z2) sinh(a + bz )  d r  (2.19) 
-03 

which is the analogue of (2.3), in equation (2.18) with b = P u ( j + i ) / S  and a = 
( j  +;)PHIS, A may be expressed as 

+ Y  sinh[ ( j  + $)P (H + uz )/SI m 

dz. (2.20) A = I-, exp(-z2) j=F-y l  sinh(@H/2S) 

If we perform the sum in equation (2.20) explicitly, we then get 
00 sinh[(x +$)PH‘/S) sinh[(y +$)PH’/S] dz A = I, exp(-r2) 

sinh@H/%S) sinh@H’/ZS) 

x (  m = - y  f exp@H‘m/S)dz (2.21) 
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where H ’ = H + u z .  Now substituting (2.21) into (2.17) with x =jN,1, y =j&l, v = 
, the sums over { jp,r}  and {idr} are decoupled and each gives the 

partition function of the N-level system with a modified magnetic field H’ = H + uz. 
Hence (2.17) now becomes 

2 p  -1/22-(l+uXN+1)/2 

This is the Heisenberg HM analogue of equation (2.4) for d = 1. This extension for 
general d is straightforward and the result is 

and r = 2d. -1/22-(d+u)N/2 where VN = 2p 
Proceeding as before we define Pl(y) by 

to obtain the RGE for the spin-S Heisenberg HM: 

where the kernel KI(x, y) is defined by 

(2.26) 

We note that due to (2.26) the renormalisation group transformation in (2.25) is both 
spin and 1 dependent. 

When S 3 0 0 ,  KI(x, y) becomes simply x/y so that (2.25) reduces to the classical 
Heisenberg (n = 3) result (2.10) as expected. At criticality (p = &), a normalised 
A(x), e.g. p~(x)/p~(O), approaches a fixed point as 1 + 00 and the critical properties of 
the model are determined from a neighbourhood analysis of the fixed point. 
However, since KI(x, y)+x/y as / + C O  for all S, the fixed point of (2.25) and its 
neighbourhood properties are independent of S. It follows that for this model we have 
universality of critical behaviour in spin magnitude S. That is, the critical exponents 
for the spin-S Heisenberg HM (2.1 1 )  and (2.12) are independent of S and are identical 
to those of the classical Heisenberg HM. 

3. Critical exponents of the n-vector HM 

As in the n = d = 1 case of I, the Gaussian fixed point 

P*(x)=e~p[2-~(l-2-~)x~-tun(2~-1)-’In2] (3.1) 

of the n -vector RGE (2.7) is thermodynamically stable for the range of a, 0 < U < d/2. 
Thus in this range of U, the critical exponents assume their classical values y = 1, 
Y = l / a  etc (see also Guttman er a1 1977). From now on, we restrict our attention to 
the non-classical region, d / 2 a u < d .  The quantities of interest here are the two 
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relevant scaling exponents YE and yH (Wegner 1976) which characterise the homo- 
geneity of the singular part of the free energy; 

F,(t, H) = 2-dIFs(2%, 2YH'H). (3.2) 

YH=i(d +a) (3.3) 

Due to the nature of contruction of RGE (2.7), YH is given simply by 

and it follows that S = (d + u)/(d - u) and 7 = 2 - a. The main object of concern in 
this section is the calculation of YE from which other critical exponents are obtained; 
for example, y = a / y E  and Y = l / y E .  

In I, we obtained an asymptotic expansion of YE in powers of ha = a - d/2 to third 
order in Au for n = d = 1. Extension of the expansion to the more general case is 
straightforward and here we only outline the derivation. First, we take out the 
Gaussian part (3.1) from PI(x)  by defining hl(x)  as 

A ( x )  = P * ( ~ ) ( h l ( 2 - ~ / ~ x ) ) l / ~  (3.4) 

where r = 2d as before and P*(x) is given in (3.1). The RGE (2.7) in terms of h I ( x )  then 
becomes 

h1+1(2(d-u)'2 Y 1 = (RI (x, Y )  0 hdx))' (3.5) 

where the operator R,(x, y )  is defined by (2.8). The eigenfunctions of Rn(x, y) are the 
generalised Laguerre polynomials Lg(x). This follows from the identity 

R,(X, y)"Ljn-1(aX2)=( l -a)kLZ"- ' (a( l -a) - 'y2)  (3.6) 
which can be easily obtained from equation ( 5 ) ,  p 43 of ErdClyi et a1 (1954). Here we 
choose the constant a to be 

(3.7) a = 1 - 2-(d-u) 

to match the scale factor in (3.5). 
By expanding h l ( x )  as 

a2 

h l ( x )  = As'( 1 + Af'2'd-u)kLp-1(ax2)) 
k = l  

(3.8) 

the RGE (3.5) can be expressed as 

Expanding the right-hand side of (3.9) and utilising, iteratively, the identity (ErdClyi et 
a1 1953): 

(3.10) 

products of the L.f"-' can be expressed as linear combinations of the Lp-' so that 
finally the RGE (3.5) can be expressed algebraically in terms of the At'. We then find 
the non-Gaussian fixed point of (3.9) for which A; is of order bo and by linearising 
(3.9) about that fixed point, we calculate the largest eigenvalue AI of the linearised 
transformation relating the A t )  to the A:+'), to second order in Au. The method 

LyLg = (k + l)LT+i -2kLE + (k +(~)Lg-1, 
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follows closely that of I so we simply state the final result here for yE = In hl/h 2, 
namely, 

*(d)(%’+. . .] (3.11) 4 - ~t AU 8(n + 2)(7n + 20) ’[ 1 + 2  ( n + 8 )  - -- d (n + 8)3 

where 

* ( d )  = ( r  + 1 + 4r1”)(r - l)-’ In r (HM) (3.12) 

and r = 2d. This is to be compared with the Au expansion for the power law potential 
n-vector model obtained by Fisher et a1 (1972). Their result for Y E  is also given by 
(3.11) (for U <2)  except that 9 ( d )  is given by 

9 ( d )  = d(9(1)- 2 W / 4 ) +  WPN (power law model) (3.13) 

where $(z)= d In I‘(z)/dz, and T(z) is the gamma function. It is interesting to note 
that the n dependence of the critical exponents is exactly the same for the two models, 
at least to second order in Au. 

For the marginal case U = d / 2  the analysis given in I can be repeated for general n 
to show that the susceptibility behaves as 

(3.14) 

This is exactly the same behaviour found by Fisher et a1 (1972) for the power law 
model. 

The RGE (2.7) is equally well suited for numerical calculation of y E  for any n, d and 
c since it can be readily computerised if, as in 11, we terminate the infinite power 
series for A(x)  at 2Mth order for sufficiently large M and use the identity 

R,(x, y )  0 X Z k  = k ! L p - l  ( - y 2 ) .  (3.15) 

By iterating (2.7), starting from 

F 0 ( x )  = Q ~ ( P ,  U ~ X >  = r ( n / 2 ) ( ~ u  1x/2)-f “ + l ~ t  n - l ( ~ ~ l x )  (3.16) 

where u1 = 2p-1/22-(d+u)’2, we calculated the susceptibility x ( P )  for given n, d and U 

directly using the relation (2.5) for various /3 just below the critical temperature Pc. 
Then by fitting x to the usual power law form for 1 - P I P c  as small as lo-’’ we could 
obtain reasonably accurate values of y for most cases considered. The values of y 
obtained in this way for n = 1, 2 and 3 and for several values of U in the range 
;< u / d  < 1 are shown in tables 1 and 2 for d = 1 and 3 respectively. The dimensional 
effect of d on y,  as we see from the tables, is very weak. This in fact could have been 
anticipated from the Au expansion (3.11). In (3.11), if yE/d is considered as a 
function of n, u / d  and d ,  the d dependence to the second order in Au comes only 
through the factor q ( d )  which is a very slowly varying function for d s 3 .  For 
example, the values of 9 ( d )  for d =  1, 2 and 3 are 6.0005, 6.0073 and 6.0345 
respectively. 

The values of y E / d  as a function of a / d  at d = 1 are plotted in figure 1 for n = 1 , 2  
and 3, together with the n = 00 results of the next sections. Similar curves for d = 3 are 
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Table 1. The values of y for n = 1 , 2  and 3 at d = 1 for several values of U. The values for 
n = 1 are reproduced from I. 

u/ d n = l  n = 2  n = 3  

0.55 1.07 
0.60 1.16 
0.65 1.262 
0.70 1.381 
0.75 1.530 
0.80 1.731 
0.85 2.030 
0.90 2.571 
0.95 4.037 

1.09 
1.21 
1.356 
1.561 
1.873 
2.428 
3.658 
7.01 

17.4 

1.11 
1.25 
1.440 
1,728 
2,202 
3.072 
4.747 
8.16 

18.2 

Table 2. The value of y for n = 1, 2 and 3 at d = 3 for several values of (+. 

U/ d 

0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

n = l  n = 2  n = 3  

1.07 
1.16 
1.263 
1.383 
1.535 
1.741 
2.056 
2.64 
4.3 

1.09 
1.21 
1.357 
1.564 
1.882 
2.45 
3.68 

1.11 
1.25 
1.442 
1.732 
2.210 
3.08 

a / d  

Fipre 1. The behaviour of YE for n = 1, 2, 3 and CO at d = 1. The broken curve is the 
~ .. .... 

approximate value of yE for n = 3 obtained by including the l / n  connection term (equa- 
tion (5.21)). 
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almost indistinguishable from those of figure 1 on this scale. We also show in tables 3 
and 4 the dependence of the critical temperature pc on n and U for d = 1 and 3 
respectively. 

Table 3. PJn,  the normalised critical temperatures for n = 1, 2 and 3 at d = 1 together 
with the exact values for n = 03. The values for n = 1 are reproduced from I. 

01 d n = l  n = 2  n = 3  n = w  

0.55 0.39691 0.40559 0.41113 0,43298 
0.60 0.47113 0.48574 0.49526 0.53245 
0.65 0,55754 0,58189 0.59818 0.66055 
0.70 0.65901 0.69968 0.72787 0.83157 
0.75 0.77969 0.84884 0.89914 1.07130 
0.80 0.92602 1.0488 1.1438 1.43126 
0.85 1.1091 1.3486 1.5422 2.03166 
0.90 1.3514 1.9223 2,3398 3.23318 
0.95 1,7185 3.702 4.74 6.83920 

Table 4. &In, the normalised critical temperatures for n = 1, 2 and 3 at d = 3 together 
with the exact values for n = 03 (equation (4.29)). 

d d n = l  n = 2  n = 3  n=co  

0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

1.4335 
1.7342 
2.0920 
2.5204 
3.0389 
3.6770 
4,4844 
5.5632 
7,2166 

1.4570 
1.7756 
2,1639 
2.6459 
3.2624 
4.0943 
5.3441 
7.714 
- 

1.4726 
1.8037 
2.2144 
2,7377 
3.4345 
4.4347 
6.064 

1.5394 
1.9230 
2.4232 
3.0986 
4.0543 
5.5008 
7,9291 

12.8118 
274128 

4. Equation of state in the n + CO limit 

For translationally invariant interactions, it is well known that the n -vector model in 
the n + CO limit is equivalent to the spherical model (Kac and Thompson 1971). For 
the HM all sites are equivalent but the interaction is not translationally invariant. With 
only slight modifications, however, the proof goes through in the weaker case of 
equivalent sites. In this section we solve the n -vector HM exactly in the n + CD limit 
and show that the resulting equation of state for general d is in fact identical to that of 
the spherical HM. The methods developed here are of interest in their own right and 
will be used in the following section to develop l / n  expansions. 

In order to investigate the n +a limit, we take the spin magnitude of each So,i in 
(2.1) and (2.2) to be 

instead of unity and let IlHIl be of order of n ”*. Thus if we let 

//HI/ = H = n 1’2p-1h 
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the single spin partition function then becomes 

where the normalisation factor A ,  is the surface area of the n-dimensional sphere of 
radius n'/2: 

(4.4) 4 2  (n-1)/2 A , = 2 r  n /r(n/2). 

Now we define the 'free energy' of the I-level, r'-spin n-vector HM by 

fi"'(h)= n- l r f ' ln  Q[(P, n"2P-1h) (4.5) 

where r = 2d and the I-level partition function Q&?, H )  satisfies the recursion relation 
(2.4) with initial value (4.3). In terms of fin', (2.4) reduces to 

exp(nr'fj"'(y 1) 
= 2r- ' / ' (~~n)"/~[r($(n - I))]-' 

x I-: e x p [ - a ~ n ( ~ ~ - 2 ~ y t + y ~ ) + n r ' f j l ) l ( x ) ] x " - ' ( l - t ~ ) ( " - ~ ) / ~  dx dt 

(4.6) 

(4.7) 

where 
1 ( d + u ) l  

a[ = (pu')-2 = (4p)- 2 , 

In the n + 00 limit, (4.6) and (4.3) can be evaluated immediately by Laplace's method. 
Thus if 

for 1 = 0,1 ,2 ,  . . . , we have 

(4.9) 
and 

fo(y) = max [yt +$ ln(1- t 2 ) ]  (4.10) 
I r l s l  

from (4.6) and (4.3) respectively. 
It seems very difficult to obtain a closed form expression for fl(h) from (4.9) and 

(4.10). However, if we take several transformations of (4.9), we can arrive at a simple 
recursion relation which can be solved. First we take the derivatives of (4.9) and 
(4.10) with respect to y to obtain a recursion relation for the magnetisation per spin in 
field h, 

(4.11) 
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Defining gl(h) by 

mdh)= hgdh2). (4.12) 

Equation (4.9) can then be brought, after some algebra, into the form 

(4.13) 1 I -1 gl(y)= gI-l(x)(l - Y  a [  gl-I(x))-' 

y = x ( l - t r ' a ; 1 g l - l ( x ) ) 2 - t a ; ' ( 1 - z r  1 I a[  -1 gI-l(x)). 
where x is a function of y determined by 

(4.14) 

Also, in terms of go(y), equation (4.10) becomes 

go(y)= (2Y)-1[(1+4Y)1'2-11. (4.15) 

Our next step, which is crucial for the solution, is to express (4.13) and (4.14) in 

g;'(gl(X)) = x (4.16) 

terms of the inverse function of go(x). That is, if 

and if we further define 

GI(Y)= Y2g;'(Y) (4.17) 

we finally arrive at the functional recursion equation 

GI (y ) = GI-l(y (1 + sly)-') - $a F l y  2( 1 + wy)-' 

a1 = z r  a1 = 2~2-" ' ,  
where 

1 I -1 

and 

Go(y) = 1 - Y. 

(4.18) 

(4.19) 

(4.20) 

The recursion relation (4.18) is now simple enough to obtain an explicit expression for 
Gf(y). The result is 

GL(y)= 1-y(l+A1,Ly)-1-$y2 a;l(l+Al,LY)-l(l+Al+l,LY)-l (4.21) 

where 

L 

I = 1  

L 

k = l  
1. (4.22) = ak = 2P(1- 2-')-12-u'(1 - 2-0(L-'+1) 

Due to definitions (4.12), (4.16) and (4.17), 

GL(mL(h)/h)= (mL(h))2. (4.23) 
Hence, if we take the thermodynamic limit L + 00 in (4.21) and (4.23) and if 

m(h)= lim mL(h), 
L-03 

we then get the equation of state 

m2 = F(h/m)  

where 
(4.24) 

00 

F(x)=G,(x-')= 1-(1-2-d) 1 2-d ' [~  +2p(2"-1)-12-"']-1. (4.25) 
1=0 
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On the other hand, for the spherical hierarchical model, after correcting some 
misprints in McGuire (1973), and generalising it for general d, we find (D Kim, 
unpublished) 

W 

PA =4(1 -2-d) 1 2-d'(s+2-up)-1+$h2p-1A-1S-2 (4.26) 
l=O 

for the spherical constraint equation and 

m = i(PAs)-'h (4.. 2 7) 

for the magnetisation, where A = (2" - l)-', and h is the reduced magnetic field. 
When we eliminate s between (4.26) and (4.27), we get identical results to (4.24) and 
(4.25). 

Most critical properties for the n +00 HM follow from (4.24). For example, for 
p >pc where m > O  as h ' 0 ,  we find 

(4.28) m ' = F ( O )  = 1 - pc/p  
where 

(4.29) p c =1 2(2 d - 1)(2" - 1)(2d - 2 " p  

and since 

F(x)  - F(0)  - x(d-u)/u for d / 2  < U < d, 

(McGuire 1973), we obtain 

YE=d-U.  (4.30) 

5. Renormalisation group equations in the A + 00 limit and l l n  expansions 

In this section, we investigate the critical properties of the n-vector HM for large n in 
the context of the renormalisation group. More specifically, we derive here the l / n  
connection to the n +CO limit result of yE, (4.30). For this purpose, we need to put the 
n + 00 limit result in a RGE form. The line of approach is- similar to the one given in 
P 4. 

Starting from the RGE (3.5) and defining q ( x )  by 

hl(x) = exp(nq(n-'/'x)) (5.1) 
in an analogous manner to (4.54, equation (3.5) may be written as 

exp(n 2-dql+1(2'd-u"2y)) 
-2=-1/2 - n n / 2  [ri(n - 1)l-l 

x exp[-n (x' - 2xyt + y ') + nq(x)]x"-'( 1 - t2 ) ("-3) /2  dx dt. (5.2) 

Now if we define &(x) by 

as in (4.11) and (4.12), and follow similar steps to those given in 0 4, (5.2) becomes, in 
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where x and y are related by 

y = x(1- &))' -tu - iI(X)). ( 5 . 5 )  

Again, as in P 4, we represent (5.4) and (5.5) in terms of the inverse function gF1 (x) of 
i h )  as 

2d-"y = i;:1(2"U(l - U ) - 1 ) =  2d-"[i;1 ( U ) ( l -  U)'-i(l- U)] (5.6) 

and we further define e f ( y )  by 

GI(Y) = (1 - y)-2g'T'((2" - l )y( l  - y)-'). (5.7) 

We then finally arrive at the transformed RGE 

Gl+1(2"y)= 2d-"[Gf(y)-4(1 -y)-1(l-2"y)-1]. ( 5 . 8 )  

It should be mentioned here that for the Gaussian fixed point (3.1) which corresponds 
to g'* = 0 in (5.4), the corresponding G* is not defined. Thus (5 .8) ,  is only applicable 
to the non-Gaussian fixed point which is of course our primary concern here. 

If the fixed point G* of (5.8) is written as 

(assuming analyticity of &*(y) at y = 0) the A* are simply given by 

k - - 1)- (s l)(r -sk+')-l (5.10) A *  -1 1 k + l -  

where r = 2d and s = 2". Furthermore, if we let 

(5.11) 

we immediately see that 

(5.12) 

In other words, yk, k = 0, 1 ,2 ,  . . . , are the 'eigen-operators' of the RGE (5.8) and in 
the range id < (T < d,  only one, corresponding to k = 0, is relevant with a scaling 
exponent yE  given by (4.30), in accordance with the results of the previous section. 

( l+1)  = 2d-u-uk ( I )  
a k  a & .  

To obtain the l / n  correction to YE, we use the asymptotic form 

[ exp(nf(x)) dx = (277)'/'(-nf"(x0))-~/~ exp(nf (xo))[ 1 + O(n-')] (5.13) 

where f ' ( x 0 )  = 0 and a < xo < b, in (5.2) twice and simply retrace the steps from (5.2) to 
(5.12) taking careful account of the l / n  order terms. When the calculations are 
carried through to the stage of (5.81 the RGE becomes 

G1+1(2"y)= 2d-"[Gf(y)-l(1 -y)-1(l-2"y)-1] 

(5.14) 
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where 

Z(O,X, y, ~ ) = 2 ~ - ~ ( 2 ~ + ~ ~ - 2 ~ - 2 ~ + 1 ) - ~ { ( 2 ~ - y ) - ~ ( 4 ~ - 1 ) ( 3 ~ - 3 ~  +&) 
- ( 4 ~ - 1 ) - ' [ 8 ( 3 - 2 ~ ) ~ ~ + ( 6 . 2 " - 1 0 + 8 ~ ) ~ + 2 ~ - 2 ~ + 1 ] } .  (5.15) 

Substituting 

(5.16) 

into+(5.14), where &*(y) is the fixed point of (5.14), with zeroth-order term given by 
(5.9) and (5.10), and linearising, we obtain 

(5.17) 

where V'O' is a diagonal matrix with elements 

Skk" k, k ' = O ,  1 , 2 , .  . . . (5.18) 

Thus, the l / n  correction to the largest eigenvalue hl = 2'" is simply n-l Vbfb which is 
in turn given by 

v(0) - d-a-uk  
kk' - 2  

a 
= n-'--Z(O, x, AT, 2A:)I +O(nW2) 

ax *=A: 
(5.19) 

where A:, k =0,  1 , 2  are given by (5.10). Our final result for YE is 

Y E =  d-a+n- ' ( ln  2)-1@(2d, 2 " ) + 0 ( r ~ - ~ )  (5.20) 

where 

@(r, s) = 2(r - s 12(s2 - r)(r  - 1 )(s3 + 2s' + 2rs + r ) [ r ( s  - 1 )2(r  + s12(s3 - r ) ] - ' .  (5.21) 

This result checks with the Au expansion (3.11) to second order in A a  and to first 
order in n-'. In figure 1, we plotted the approximate values of YE for n = 3, d = 1 by 
including only the first-order term in n-l in (5.20) to compare it with the actual values 
of YE obtained numerically. We see that the approximate YE obtained in this way is 
not at all accurate, especially near U = i. 

6. Summary and discussion 

In this paper, we have obtained exact renormalisation group recursion relations for 
the n-vector and Heisenberg version of Dyson's HM in d dimensions and discussed 
their respective critical properties. We only considered the interaction which is 
rotationally invariant in spin space and in this case, the RGE are non-linear integral 
transformations which involve only one integration for all cases considered. It is 
interesting to note here the resemblance of our RGE to the approximate RG trans- 
formation for the short-range interaction n-vector model discussed by Kadanoff et a1 
(1976). In fact, equation (80) of their work, which is the RG transformation for 
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interactions in the one-hypercube approximation, can be rewritten in the form 

V”(PdP(1 -P)I1’*Y 1 
1 = constant-Tn ln(1 - p )  

m m 

+In i, * * I, e~p[- ;p2-~(x - y )’ + 2dV-(~)] dx (6.1) 

where we have subtracted the Gaussian fixed point part from their v(x); i.e. C ( x ) =  
I J ( x ) - ~ ~ - ’ ~ x * .  For the meaning of v(x), see equation (72) of Kadanoff et a1 (1976). 
Here, p is their variational parameter, x = IIxII, and x is an n-dimensional vector. This 
is to be compared with (2.6) or (3.5). Thus, the 1) = 0 approximation which amounts 
to putting p = 1 in (6.1) for all d is equivalent to our n-vector HM with U = 2. 

For the s p i n 4  Heisenberg HM, the renormalisation group transformation depends 
on both the spin magnitude S,  and I, the number of times the transformation has been 
applied previously. However, since the critical exponents are determined by the 
transformation in the 1 + 03 limit which reduces to that of the S = co classical Heisen- 
berg HM for all S,  we have an explicit form of universality in S for the quantum HM. 

In order to assess quantum effects in the temperature range where experiments are 
usually performed, we have plotted in figure 2 the logarithm of the high-temperature 
susceptibilities against In t ,  where t = 1 - /?/pc for S = f and S = 03 respectively far the 
particular case of d = 3  and u = 2 .  The figure shows that the two curves almost 
parallel each other for a wide range of t, indicating the insignificance of quantum 

Figure 2. x against t = 1 -&/@ in log-log plot for S = $ and S = 03 Heisenberg HM 
respectively at d = 3 ,  u = 2 .  @,=3~111600073 and 7.122315720 for S k i  and S = O ~  
respectively and y = 1.5247 for both cases. 
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effects for this model. However, if one only used the data in the region t 5 one 
might conclude that y for spin-i is larger than for the spin-infinity case. For the 
Heisenberg model with short-range interactions, the evidence for universality of 
critical exponents in S comes mainly from series analysis of the high-temperature 
susceptibility series, the conclusions of which are subject to personal opinion (Stanley 
1974). Even though the interaction for the HM is not very physical, we may infer from 
our investigation that the quantum effects are indeed small in the critical region. 

The d -dimensional generalisations considered here, following Blekher and Sinai 
(1974), are slightly different to those employed by Baker (1972) and Baker and 
Golner (1977). (The two are the same for d = 1 apart from insignificant surface 
terms.) When the critical exponent y is considered as a function of u / d  and d, the Au 
expansion obtained in 9 3 shows that y does depend on u / d  and d separately although 
the d dependence, which comes through %(d),  (3.12), is rather weak. This weak d 
dependence is also seen from numerical calculations discussed in 9 3. At cr/d = 0.65 
and n = 1 for example, the value of y for d = 3 has changed only by 0.1% from that 
for d = 1 and the change for d = 2 is even smaller. If one were given only the 
numerical values of y for d = 1 and d = 2 to four significant digits near u / d  = 3, for 
example, one might be tempted to conclude that y is only a function of v / d .  The Au 
expansion also reveals that the n dependence of y (or yE) for HM is exactly the same as 
that for the power law interaction model obtained by Fisher et a1 (1972) to second 
order in Au. This suggests the close similarity of the two models near U = d/2 so long 
as u < 2 .  In any case, the HM is designed to simulate the power law interaction. 
However, the power law model assumes short-range behaviour whenever U > 2 while 
the HM does not have such a property. The limiting behaviour of YE as U + 1 for d = 1 
was investigated for the power law case by Kosterlitz (1976). Our numerical results 
shown in figure 1, are consistent with his result for n 3 2 in that Y E -  1 -U as U + 1.  
However the two models have different behaviour for n = 1. (The behaviour of yE in 
the U + 1 limit for d = n = 1 was discussed in detail in I.) 

In 9 4, we solved the n-vector HM explicitly in the n + 00 limit by transforming the 
recursion relation for the magnetisation of finite systems to one which could be 
explicitly summed. Our solution, in the form of an equation of state, was then found 
to be exactly the same as that of the spherical model. It is interesting to note that the 
spherical constraint does not appear in our solution of the n + 00 HM, but is naturally 
embedded in the solution itself. 

The line of approach employed in 9 4 was used in 9 5 to arrive at a simple RGE in 
the n + 00 limit, where the non-Gaussian fixed point and scaling exponents could be 
easily found. On the basis of this approach we were able to obtain correction terms of 
order n-' to the RGE, and thus obtain the l / n  expansion of yE to first order in n-'. In 
this procedure, the assumption that the fixed point G*(y) of equation (5.8) is analytic 
at y = 0 is crucial. Without this assumption, the fixed point is not unique. To be 
specific, if G*(y )  is a fixed point solution of equation (5.8) then G*(y)+Ay'd-""" is 
also a fixed point with the constant A being arbitrary. To zeroth order, this does not 
aFect the scaling exponent YE = d -U. However to obtain the l /n  correction to yE, 
G*(y) being analytic at y = 0 to zeroth order was a necessity. 
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